What is new in UNIFIT 2022?

Main focus of the advancement to the **version 2022** was in the improvement of the calculation procedure QPA (quantified peak areas) for the estimation of the spectrometer transmission function T(E) (IERF). The functionality of the right mouse button was extended with design commands. A new input routine for the loading of SPECS Prodigy data was implemented. Two additional function of the Min/Max value definition of the fit parameters were implemented. The input dialogue for the fit parameters has now a call for the increasing and decreasing of the number of peak-fit components. The spectrum labelling and title functions were extended.

- i) The sub-programme for the generation of the spectrometer transmission function using reference peak pairs was improved. The following tasks were realized:
 - Extending the *T*(*E*) estimation from pure-element reference samples (Au, Ag, Cu, Ge) to well defined compounds (IL).
 - Plot of the input data and the *T*(*E*) function in one sheet during the calculation and after loading the corresponding UNIFIT projects.
 - Changing of the fixed value $E_0 = 1000 \text{ eV}$ to a variable adjustable fit parameter E_0 .
 - Optimization of the fit procedure.
 - Optionally setting of the number of cycles (more than one) and sweeps per cycle.
 - Saving and reloading as UNIFIT project.
 - Improved saving and reloading of the estimated T(E) functions.

The characterization of the new feature is:

- The calculation time is:
 - Time = Number of cycles \cdot Number of sweeps $\cdot 11^{\text{number of free fit parameters}}$
- The typical acquisition parameters of a measurement function are saved additionally with the estimated parameters of the T(E) function (*.dat)(see Fig. 1). After a reloading the T(E) function is displayed like after the calculation.
- The separation between:
 - 1. 'Calculation Transmission Function Al/Mg Excitation' and

2. 'Calculation Transmission Function Synchrotron Excitation' is cancelled.

- The T(E) approach can be saved and reloaded as UNIFIT project.
- After a reload the calculation can be continued and the input data can be displayed.
- T(E) > 0 at the displayed energy range.
- After pressing 'Calculate' (Fig. 1) the normalized intensities of the peak pairs and the curve of the T(E) function are displayed in one plot.

- The dialogue for the definition of the fit parameters of the T(E) function will be opened (see Fig. 2). Additionally, the fit conditions can be defined with:
 - 1. Number of sweeps per cycle.
 - 2. Number of cycles.
 - 3. Break condition (The iteration stops if the error (SSD) lower a defined value (e.g. 0.05).
 - 4. The function T(E) can be normalized $(T(E_0) = 1)$.

The following information are displayed (also after a iteration):

- 1. Error of the iteration.
- 2. Calculation time (zero before the iteration was started).

The fit parameters can be saved and reloaded.

Input Peak	Areas					
	Peaks	Ekin/eV	Intensity/%	at%-Ratio	Acquisition Parameters	T(E)
۲	Peak 1/1	790	34.111	1	Peak name	Transmission Fun
	Peak 1/2	740	65.889	2	Batch parameter	BESSY
0	Peak 2/1	791	12.935	1	Comment:	Calculated Transr
	Peak 2/2	356	87.065	6	Date	20 12 2019 09 20
0	Peak 3/1	741	11.773	2	Highest Excitationen	900
	Peak 3/2	62	88.227	10	Initial Energy (KE)/eV	56
0	Peak 4/1	648	15.536	3		970
	Peak 4/2	90	84.464	9		070
0	Peak 5/1	578	19.847	4	Step vvidtn/ev	1
	Peak 5/2	142	80.153	8	Points:	815
0	Peak 6/1	400	42.652	5	Accumulations	1
	Peak 6/2	357	57.348	6	Dwell Time/s	1
0	Peak 7/1	401	25.691	5	Pass Energy/eV	50
	Peak 7/2	63	74.309	10	Analyzer Mode	CAE
0	Peak 8/1	143	48.167	8	Lens Mode	LAE
	Peak 8/2	91	51.833	9		
0	Peak 9/1	649	15.067	3		
	Peak 9/2	64	84.933	10		
0	Peak 10/1	579	23.6	4		
	Peak 10/2	235	76.4	7		
-	Delevilete	Canaal	Sava	Lood	Load Data of an	o Doir (* poi)

Fig. 1. Input dialogue for the estimation of the transmission function T(E) using ten reference-peak pairs and appropriate acquisition parameters, example: IL

ii) A new input routine for the SPECS Prodigy data format was implemented. The input of XPS, REXPS and XAS data are supported:

Four loading options are offered (see Fig 3):

- 1. Spectrum
- 2. Ring Current
- 3. Mirror Current
- 4. TYR-Data
- 5. Free data block name, edit field
- One normalization option: normalizing to Ring Current.

- Option: Create sum curve of scans (slices).
- Incorrect input data are identified and changed to readable data.

Fig. 2. Left: plot of the normalized reference pairs and the T(E) function using the start parameters in one frame, right: input dialogue for the parameters of the T(E) function and parameters for the controlling the estimation as well as the information for validation of the calculation

SPECS Prodigy Import Options	
Loading Options	
 Intensities 	 Ring Current ● TEY
 Mirror Current 	 Nozzle
In Create Sum Curve	ve of Scans
Data Normalization	
Normalization of	Intensities with Ring Current
ОК	Cancel

Fig. 3. Dialogue for the definition of the loading condition of the SPECS Prodigy data

- XAS:

1. Energy scale is calibrated to the external true excitation energy values.

2. Energy scale is converted to equidistant steps using linear interpolation of the intensities.

3. Minimum of the step width: 0.02 eV

- XPS:

Data of a RESXPS measurement are identified automatically.

iii) Two new options for the definition of the Min/Max values of the fit parameters were implemented (Fig. 4). The Min/Max values of the positions of all defined peak-fit components may be defined using the position of the peak-fit component. The Min/Max values can defined:

1. All maxima and minima: position of peak-fit component +0.2 eV and -0.2 eV

2. All maxima and minima: position of peak-fit component +0.4 eV and -0.4 eV

GaAs_Ozone.ufp	p - UNIHI FOR WINDOWS		1.1.1.1.1.1	0. (2000 11/ 20	AL 6000 144 6	001 0000 10						
Pile Modify Per	Start in Batch Processing Quantification Information Ar	Fit Parameters Peak/Sum/Ab	n intensity Scale solute	Préférences	windows W: 1	3000 W: 30	.01-6000 W:6	001-9000 W	: 9001-120	2000 W: 12001-150	uu UN	P11		
		Deek seme	750000	Ein	4.0	E 1	4.00			-202	Eiv	A=205	Fire	
40 00	E = 1318.2 eV 1 = -43.42578 / 30852.80 Counts		7500Ga/	TS FIX		F	ASO I			15203		A5205		
40.00		Peak height	5741.4		544.298	5	2492.	2 0		26249.1		3715	_	3
	GaAs Ozone	L-G Mixing	0.36864		0.36864	1	0.368	64	∞ _0	0.36864	7	0.36864		
42.80		Position/eV	1323.1		1324.3		1325.	7 (1	1326.4		1327.4		
42.00		FWHM/eV	1.50457		0.1		1.504	57	⊽ 1	1.50457	7	1.50457	V	
ts		Asymmetry	0		0		0		v 0	0		0	V	
5 36.60	-	abs. Area	10455		68.08		4554		47	7941	_	6774	-	
Š		rel. Area	0.1498		0.001		0.0652		0.	.6869		0.0971		
ty /			-		0		4.5							
30.40	-	Сору	Expor		Save		1. Pe	ак						
Inte		Print	Previe	w	Data Banl	C DS	+ AP+	PN	-					
		OK	Relativ	'e	Cancel	-D:	S -AP	-PN	l					
24.20	- l				~		,	100	12					
		Min/Max Fit Parameter:	s Peak											
18.00	_			Peak 1	Pe	eak 2	Pe	ak 3	F	Peak 4	F	Peak 5		
10.00	333 1332 1331 1330	Peak height	Min:	0)	0			0		0		1319 1318
	1002 1001 1000		Max	75000	0 7	750000	7	50000	— -	750000	٦ŀ	750000		7
		L-G Mixing	Min	0)				0		0		3
ω ⁵	-	L C mining	Max.	1			1		-th	1	-it	1		
¥ .5		Position/e\/	Min	1322 7	7	1323.0		325.28		1326		1327		
		- I Osition/ev	Max:	1222.1		1020.0		206.00		1326.0		1207.0		
			Max:	1525.3		1324.7		4		1320.8	-łł	1321.8		
		F vvHM/ev	Min:	0.1		.1		1		0.1	_	0.1		
			Max:	5		0.1	5			5	4	5		
		Asymmetry	Min:	0)	0			0		0		F
				0)	0			0		0		
		-	Max:	•		·								
			Max:	0		, 								
		ОК	max:	Cance	el	,								
		OK -0.2 E0 +0	Max:	Cance 0.4 E0	el +0.4	<u>,</u>								
		OK -0.2 E0 +0	Max:	Cance 0.4 E0	el +0.4	,								

Fig. 4. Top: Dialogue for the definition fit parameters, bottom: dialogue of the Min/Max values of the fit parameters with the two new controls

- iv) The number of the peak-fit components can be increased or decreased using a separate control implemented into the dialogue for the definition of the start parameters of the peak fit (see Fig. 4). The controls are titled with 'PN+' and '-PN'.
- New functions were implemented into the dialogue 'Spectrum Labelling 1' (see Fig 5) and 'Spectrum Title 1' (see Fig 6).
 - 1. The x- and y position of the labelling of the spectra can be defined.
 - 2. The mouse operation for the positioning after a definition of a spectrum label was removed.
 - 3. An additional label is placed with a short shift of the x and y position.
 - 4. The new command 'OK Plus New Labelling' or 'OK Plus New Title' allows the definition

of more than one label or title with a short closing and reopening of the dialogue 'Spectrum Labelling 1' or 'Spectrum Title 1'.

5. The commands '-DS' and 'DS+' permits the simultaneous decreasing and increasing of the text size without closing the dialogue.

The changed text size is saved automatically and is used for a new activation of a dialogue.

- vi) The New functions were implemented into the dialogue 'Spectrum Labelling 2' (see Fig 7) and 'Spectrum Title 2' (see Fig 8). These programme features allow an integration of a formatted text, figures or pictures into the spectra windows.
- vii) The functionality of the popup menu of standard-spectra windows using the right mouse button was extended by:
 - 1. Spectrum Labelling 2
 - 2. Spectrum Title 2
 - 3. Activate Resizing 'Spectrum labelling 2'
 - 4. Activate Resizing 'Spectrum Title 2'
- viii) The order to increase the secure use of the program UNIFIT, open dialogues are closed in two cases:
 - a) Automatic without an information message on changing the active window:
 - b) With an information message in case of saving a Unifit project, export of data, export of images and printing out operations.

GaAs_Ozone.ufp - UNIFIT FOR W	NDOWS												- 0 X
File Modify Peak Fit Batch Pro	cessing Quantificati	on Informatio	on Annotation/Des	ign Calibration Intens	ity Scale Preferences	Windows W: 1-300	0 W: 3001-6000 W: 6001-9000	W: 9001-12000 W: 1			M TE ET 82 III		
										C Car La- La-			Incu 1115
W 41: As2p3 E = 160.6 eV I = 2	4408.74 / 20473.03 Co	ounts											
3 -		-		· · ·	· · ·	· · ·	· · · ·		· · ·	· · · · ·			
											3		
Labelling/Legend								<u> </u>			1		_
	005	000	[1	
GaAs	905	220				_					_		
As203	574	332				_					_		
As205	480	355											
AsO	691	404											
	711	424											
	35	35				_					_		
	40	40				_							
l	45	45				_							
	55	55											
	60	60				_					-		
	65	65											
	70	70											
	75	75											
	80	80				_					_		
	85	85											
	90	90				_							
	95	95				_					_		
L]									
							Window	/S		Appendix			
OK	Cancel		OK Plue N	low Labelling			 Actve 	Window		Annotati	on + Windows Numb	er	
	Cancer		OK Plus I	vew Labelling			⊜ All W	indows of the	Same Type	Annotati	on + Batch Paramete	r	
Remov	e All		-DS	DS+			 Selet 	ted Windows	of the same Type	Annotati	on + Numbering		
	_	_	_		_			_					_

Fig. 5. Dialogue 'Annotation/Design – Spectrum Labelling 1'

Quantification		Annotation/Design Calibration Intensity:	icale Preferences Windows W: 1-3000 W: 3001-6000	₩. 6001-9000 W: 9001-12000 W: 12001-15000 UNIFT		
20473.03 Cour (2750.337 Cou	ı. ۱		i ai 41 ac 🔍 ai ai a i a' a	🕻 👫 💑 💑 🎆 🎆 🏸 i 🎦 i 🖓 i 🖓 i		
20473.03 Cour / 2750.337 Cou	its				비전 같은 많은 다음 다	
/ 2750.337 Cou						
	nts					
						3
277	56					
329	145					
349	165					
20	20					
25	25					
30	30					
35	35					
40	40					
45	45					
50	50					
55	55					
60	60					
65	65					
70	70					
75	75					
80	80					
85	85					
90	90					
95	95					
100	100					
			Frame	Windows	Ap	pendix
			 Without 	Actve Window		Title + Windows Number
Cancel		OK Plus New Title	Simple Frame	All Windows of the Same	Turne	Title + Batch Parameter
		DS DS	Simple Plane	All Wildows of the Same		
		-03 034	Shadow Frame	Selected Windows of the	same Type	litie + Numbering
	277 329 349 20 25 30 55 50 55 60 55 65 70 75 80 85 90 85 90 100	277 56 329 145 20 20 25 25 30 30 35 35 40 40 45 45 50 50 60 60 65 65 60 80 85 85 90 90 95 95 100 100	277 56 329 145 349 166 20 20 25 25 30 30 35 35 40 40 45 45 50 50 60 60 65 65 60 60 68 65 90 90 95 95 100 100	277 56 329 145 349 165 20 20 25 25 30 30 35 35 40 40 45 45 50 55 60 60 65 55 60 60 68 65 90 90 95 95 100 100 Frame OK Plus New Title • DS<	277 56 329 145 349 165 20 20 25 25 30 30 35 35 35 35 40 40 45 45 50 50 55 55 60 60 65 65 70 70 75 75 80 85 90 90 95 95 100 100 Frame • OK Plus New Title • DS DS+	277 56 329 145 349 165 20 20 25 25 30 30 35 35 40 40 45 45 50 50 55 55 60 60 65 65 60 60 65 65 90 90 95 95 96 95 100 100

Fig. 6. Dialogue 'Annotation/Design – Spectrum Title 1'

Spectrum Labelling 2	
x ² x ₂ F <i>K</i> α	
Excitation Energy: AlKα	
Format Spactrum Labelling V = 246 V = 40	
$X = 240 \qquad Y = 49$	
OK Cancel Delete Width = 722 Height = 304	
Mouse on text field. Hold shift and left mouse button. Mouse moving changes the size of the text field!	

Fig. 7. Dialogue 'Annotation/Design – Spectrum Labelling 2'

Spectrum Title 2			
x² x ₂ F K α			
As 2p _{3/2}			
Frame			
© Without © Shadow Fram	е		
Format Title Annotation X =	825	Y =	39
OK Cancel Delete Width =	112	Height =	33
Mouse on text field. Hold shift and left mouse button. Mouse moving cl	hanges the	size of the tex	t field!

Fig.8. Dialogue 'Annotation/Design – Spectrum Title 2'

- ix) The programme-internal spectra names can be modified manually. Five options are offered:
 - a) Spectrum name without extension (multi region measurement),
 - b) Spectrum name plus batch parameter (SDP, ARXPS),
 - c) Spectrum name plus x-Axis (line scan),
 - d) Spectrum name plus y-Axis (line scan),
 - e) Spectrum name plus x-axis and plus y-axis (multipoint measurement, mapping),
 - f) Spectrum name plus batch parameter plus x-axis and plus y-axis (SDP mapping).